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Chemical applications of topology and group theory. 
26*. The sextuple diamond-square-diamond 
rearrangement of the icosahedron through a 

cuboctahedron intermediate* 

R. Bruce King 

Department of Chemistry, University of Georgia, Athens, GA 30602, USA 

The details of the symmetry factoring of the graphs corresponding to the icosahedron 
and the cuboctahedron are presented. Such symmetry factoring procedures use the 
sequence of twofold C2 and threefold C a elements C 2 x C 2 x C 2 x C 3 to give disconnected 
graphs having eigenvalue spectra similar to those of the original polyhedra but with 
components having only one and two vertices. In addition, the same syrmnetry factoring 
sequence is used to determine the eigenvalue spectrum of an intermediate in the sextuple 
diamond-square process for conversion of the icosahedron to the cuboctahedron. 

1. Introduction 

Two highly symmetrical 12-vertex polyhedra are the icosahedron (fig. 1) and 
cuboctahedron (fig. 2) which are of chemical significance in the following areas: 

(1) They are involved in rearrangements of 12-vertex boranes and carboranes 
such as B12HI2~ and C2B10H12, as originally recognized by Lipscomb [2] and 
studied recently in much greater detail by Gimarc [3]. 

(2) Boron icosahedra are basic building blocks in elemental boron and metal 
borides with high boron content [4,5]. 

(3) Models for icosahedral quasicrystals [6-9] may be based on aluminum 
icosahedra. 

(4) These 12-vertex polyhedra occur in both centered metal carbonyl clusters 
such as the rhodium carbonyl hydrides [Rhla(CO)24H 5_ q]q- (q = 2 -4 )  [10, 11], 
in which the outer Rhl2 cuboctahedron may be regarded as a 12-vertex 
"pseudodeltahedron", and uncentered metal carbonyl clusters such as 
[Ni9(AsPh)3  (CO) 15] 2- and [Nilo(AsMe)2(CO):8]2- containing Ni9As 3 and Ni loAs2 
icosahedra, respectively [12]. 

*This paper is dedicated to Professor Frank Harary in recognition of his pioneering work in areas of graph 
theory closely related to chemical problems. 

*For part 25 of this series, see ref. [1]. 
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Fig. 1. The icosahexlron and a schematic summary of its 
symmetry factoring using the sequence C 2 × C 2 × C2 x C3. In 
the final stage, edges of weight 2 are written as double lines. 
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(5) These 12-vertex polyhedra are found in polyoxometallates [13] such as the 
so-called Keggin ions XM120 ~ (n = 3-7);  M = Mo, W; X = B, Si, Ge, P, Fe m, 
Co u, Cu n, etc.) containing an M12 cuboctahedron and the Silverton ions 
MWMo12Oa8~ (M = Ce, Th), in which the central metal M TM forms an M12 
icosahedron with the interior oxygen atoms. 

Conversion of an icosahedron to a cuboctahedron can be visualized as a 
sextuple diamond-square process. Such a process is the first stage of a sextuple 
diamond-square-diamond rearrangement of an icosahedron through a cuboctahedron 
intermediate, which was first recognized by Lipscomb [2] already in 1966 and 
subsequently studied in greater detail by Gimarc and collaborators [3]. This paper 
compared in detail the spectra of the icosahedral and cuboctahedral graphs; such 
spectra are related to the bonding orbitals of these polyhedra in chemical structures. 

The problem of determining the spectra of the icosahedron and cuboctahedron 
is an excellent illustration of symmetry factoring methods [14-21]. During the 
course of each symmetry factoring, a connected graph G with v vertices depicting 
the polyhedron in question is transformed into a disconnected graph G*, also with 
v vertices but with c components G~ . . . . .  Gc such that the eigenvalue spectrum of 
G* is the same as that of G. However, whereas the determination,of the spectrum 
of G requires the evaluation of a determinant of a v × v matrix followed by the 
solution of an equation of degree v, determination of the equivalent spectrum of G* 
requires the evaluation of determinants of smaller matrices no larger than u × u 
followed by the solution of equations of lower degrees no higher than u, where 
u < v is the number of vertices in the largest components of G*. An important 
purpose of symmetry factoring is thus the reduction of the degrees of the algebraic 
equations which must be solved in order to determine the spectrum. In addition, the 
size of the matrix for which the determinant must be calculated is u < v. The high 
symmetries of the icosahedron and the cuboctahedron make it possible for the 
symmetry factoring procedure discussed in this paper to reduce the corresponding 
connected 12-vertex polyhedral graphs into disconnected graphs having only one- 
and two-vertex components. 

2. Symmetry factoring studies 

The topology of chemical bonding can be represented by a graph G in which 
the vertices correspond to atoms or orbitals participating in the bonding and the 
edges correspond to bonding relationships. Previous papers [22-25] have shown 
that the energy parameter Ek for molecular orbital k is related to the eigenvalues 
xk of the adjacency matrix A as follows: 

a + xk/3 (1) 
E t = l+Xk  S • 
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Fig. 2. The cuboctahedron and a schematic summary of  its 
symmetry factoring using the sequence C 2 x Cz x C 2 x C 3. 
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The parameters a, r ,  and S of eq. (1) are the standard parameters of Htickel theory, 
namely the Coulomb integral, the resonance integral, and the overlap integral, 
respectively. 

In order to determine the eigenvalues xk of the adjacency matrices of the 
icosahedron (fig. 1) and cuboctahedron ( fig. 2), symmetry factoring methods [17] 
are used as illustrated in figs. 1 and 2 for the icosahedron and cuboctahedron, 
respectively. In the symmetry factoring of the icosahedron, the fivefold axes are not 
used. Furthermore, in applying the simplest reported symmetry factoring procedure 
[17], threefold axes must be treated with caution since Rule E4 of ref. [17] is 
questionable. However, edges of the type E4 (ref. [17]) do not appear in the symmetry 
factoring of the icosahedron and cuboctahedron, so this is not a problem with the 
systems considered in this paper. 

The symmetry factoring schemes outlined in figs. 1 and 2 for the icosahedron 
and cuboctahedron, respectively, use the tetrahedral subgroup contained in the point 
groups of each of these polyhedra. In order to avoid the difficulty with the 
threefold axes in the reported [17] procedure, the twofold axes are used first so that 
the symmetry factoring procedure used in both cases can be summarized as 
C2 × C2 × C2 × C3. Each stage of symmetry factoring using a twofold axis leads to 
a so-called G branch (G = gerade) and a so-called U branch (U = ungerade) as 
indicated in figs. 1 and 2, where the gerade branches are the left branches and the 
ungerade branches are the right branches. The roots of the equations corresponding 
to each of these branches each lead to a single eigenvalue in the graph spectrum. 
Each stage of symmetry factoring using a threefold axis also leads to two branches, 
the A and E branches. The roots of the equations corresponding to the A branch 
appear once, but those corresponding to the E branch appear twice in the graph 
spectrum. In the cases of both the icosahedron (fig. 1) and the cuboctahedron 
(fig. 2) several symmetry factoring routes may lead to the same eigenvalues, thus 
providing eigenvalues of higher multiplicities, such as 3 and 5. Thus, in the case of 
the icosahedron the quintuply degenerate - 1 eigenvalue arises twice from the GGGE 
symmetry factoring sequence and once each from the GUU, UU, and UGU symmetry 
factoring sequences (fig. 1), thus accounting for its observed multiplicity of five. 

Figures 1 and 2 show that both the icosahedron and cuboctahedron have four 
distinct eigenvalues with patterns of multiplicities of 1, 3, 5, 3 and 1, 3, 3, 5 from 
the most positive eigenvalue down for the icosahedron and cuboctahedron, respectively. 
The multiplicity pattern of 1, 3, 5, 3 for the icosahedron corresponds to one anodal 
s orbital, three uninodal p orbitals, five binodal d orbitals, and three of the seven 
trinodal f orbitals, respectively, with the eigenvalues decreasing with increasing 
nodality, as expected. However, the multiplicity 5 eigenvalue of the cuboctahedron 
is unusual since its point group Oh has no irreducible representations of dimension 
higher than three. The possibility of this eigenvalue of multiplicity five of the 
cuboctahedron arising from the accidental coincidence of a doubly degenerate and 
a triply degenerate eigenvalue was investigated by a more detailed study of the 
symmetry factoring procedure. 
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The eigenvalues of both the icosahedron and cuboctahedron can be classified 
by their origins from the symmetry factoring procedure using G and U to designate 
the symmetric and antisymmetric branches arising from a twofold symmetry element, 
and A and E to designate the symmetric and antisymmetric branches from a threefold 
symmetry element, respectively (table 1). The - 1  eigenvalue of  multiplicity five 

Table 1 

Relationship between the eigenvalues of the icosahedron 
and those of the cuboctahedron. 

Symmetry Number of Icosahedron Cuboctahedron 
factoring branch eigenvalues eigenvalue eigenvalue 

G3A 1 5 4 
G3E 2 -1  - 2  

GZU 6 +~/5 +2 
GU z 3 -1  0 

of the icosahedron is seen to arise from the coincidence of  a twofold degenerate G3E 
branch with a threefold degenerate GU 2 branch. This coincidence is a consequence 
of the fivefold symmetry element not used in the symmetry factoring procedure. 
The - 2  eigenvalue of the cuboctahedron of multiplicity five is seen to arise from 
the accidental coincidence of the threefold degenerate G2U branch and the twofold 
degenerate G3E branch. Thus, the eigenvalues of the icosahedron and the cuboctahedron 
of  multiplicities five are seen to have different origins. 

The identical symmetry factoring procedure using a C2 x C2 x C2 x C3 sequence 
can also be applied to an intermediate stage in the sextuple diamond-square conversion 
of an icosahedron to a cuboctahedron in which the weight of one diagonal of each 
of the six square faces of  a cuboctahedron (designated as a) is made 0.5 rather than 
0 for an ideal cuboctahedron. In this case, a 1, 3, 3, 2, 3 multiplicity pattern without 
any accidental coincidences is obtained. The relationship between the eigenvalues 
of  the icosahedron, the cuboctahedron with a = 0.5, and the ideal cuboctahedron 
with a = 0 is depicted in fig. 3. 
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Fig. 3. The eigenvalue spectra of the icosahedron, cuboctahedron, and an intermediate (a = 0.5, 
see text) in the sextuple diamond-square process converting the icosahedon to a cuboctahedron. 
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3. Chemical implications 

The eigenvalue spectra of  the icosahedron and cuboctahedron can be related 
to the tensor surface harmonic theory as developed by Stone [26] and elaborated 
by Mingos and Johnston [27]. In a polyhedron with n vertices which is regarded 
as homeomorphic to the sphere, as in the case with deltahedra in globally delocalized 
cluster bonding [28-32],  the single radial orbitals directed from each vertex towards 
the polyhedral center form a collection of n core molecular orbitals. These n core 
orbitals may be described by the scalar spherical harmonics, which correspond to 
the single S °, the three po, the five D °, the seven F a orbitals, etc., of  increasing 
energy and nodality. Figure 3 shows quite clearly that the distortion of  the icosahedron 
to the cuboctahedron through a sextuple diamond-square  process has a minor effect 
on the positive eigenvalues which represent the S ° and po bonding orbitals. The 
major reshuffling of the eigenvalues in going from the icosahedron to the cuboctahedron 
occurs with the negative eigenvalues which represent antibonding (virtual) orbitals 
of  minor chemical significance. 

A more specific chemical implication arises in the consideration of  12-vertex 
globally delocalized metal clusters containing interstitial atoms [ 10, 11]. Uncentered 
globally delocalized 12-vertex metal clusters such as [Ni9(AsPh)3(CO)15] 2- and 
[Ni10(AsMe)z(CO)18] 2- [12] as well as the deltahedral boranes B12H~- and C2B10H12 
are icosahedra, whereas centered globally delocalized 12-vertex metal clusters 
[RhI3(CO)24H5_q] q- (q = 2-4 )  may be cuboctahedra [10, 11] in order to have more 
space for the interstitial atom. The expansion of  an icosahedron to a cuboctahedron, 
as might occur through a sextuple diamond-square process, is seen (fig. 3) to have 
relatively little effect on the energies of the skeletal bonding orbitals and therefore 
does not affect the stoichiometry leading to a closed shell electronic configuration. 
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